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Abstract—An embedding of stochastic optimal control problems of artificial intelligence form into reproducing kernel Hilbert spaces 
is presented in this study. A model-free, non-parametric approach for calculation of an approximate solution to the control problem is 
obtained by consistent, sample based estimates of the embedding. The solve the problem; it decomposes into two components; 
invariant and task dependent. Hence, the solution presented in the current paper used sample data more efficiently than previous 
sample based approaches in this field by some innovations such as allowing sample re-use across tasks. To show the efficiency of 
the introduced approach, numerical examples on test problems are presented. 
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———————————————————— 

1 Introduction 

In spite of challenges in solving general non-

linear stochastic optimal control (SOC) and 

Reinforcement Learning (RL) problems, a type of 

problems which can be solved by closed form 

solutions are recently identified [1-8]. To solve 

these problems, it is necessary to evaluate an 

artificial intelligence, which is equivalent to 

evaluating a partition function which in turn is a 

tough problem. However, these solutions are 

interesting due to their several practical 

applications, resulting from the possibility of  
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applying Monte-Carlo and variational methods for 

solving these problems [9, 10]. Analytical 

evaluating the required artificial intelligence, based 

on linear operators acting on state vectors, is         

possible in some special cases such as linear 

dynamics and quadratic costs [11, 14, 16, and 17]. It 

is shown in the current paper that the artificial 

intelligence can be evaluated, regarding the 

covariance operators acting on elements of the 

Hilbert space, by appropriate embedding of it into 

a reproducing kernel Hilbert space (RKHS). 

Although a tractable solution to the SOC problem 

does not yield in itself, consistent estimators of the 

required operators lead to efficient non-parametric 

algorithms [11-23]. 

     A critical prominence of estimating the 

operators other than directly estimating the 

artificial intelligence, as the goal of the previous 

applications of Monte-Carlo methods, is that some 

deficiencies of previous methods can be eliminated 

without considerable loss of their advantages [24]. 

In this approach, the complexity of sample is 

considerably reduced due to separating the 

problem into an invariant and task varying 
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component [25]. It allows efficient sample re-use 

across tasks and leads to a form of transfer learning 

which in turn, leads to the situation where any 

change in the task including, for e.g., different start 

states, necessitate acquiring new samples [26-39].  

Moreover, as the approach remains model-free, it 

is applicable to the RL setting, unlike to variational 

[40-45] or function approximation [46-59] 

approaches. As a result, it is further distinguished 

through convergence guarantees. The operators 

becomes state-dimensionality independent by 

embedding of RKHS. It leads to better scalability of 

operators. However, by informing choices of 

sampling procedures and kernel, incorporating the 

prior knowledge about both tasks and dynamics is 

effectively possible [60]. 

     It should be noted that the presented approach 

in this study is not limited to problems which are 

in context of artificial intelligence stochastic 

optimal control. For solving linearly solvable 

MDPs by [61, 62], inference control by [63-73] and 

free energy control of [74, 75], an underlying 

problem of equivalent form should be solved. As a 

result, the proposed methods are directly 

applicable in these fields. In addition, a 

generalization of artificial intelligence control to 

develop an optimal policy for general SOC 

problems is described by [76-83]. Moreover, [84] 

and [85] were proposed artificial intelligence 

formulations for discounted and average cost 

infinite horizon problems and risk sensitive 

controls, respectively, while in this study, finite 

horizon problems are critically focused. 

     A brief review of the formulation of a SOC 

problem in the artificial intelligence control 

framework of [86-90], which has two specific 

properties related to the presented approach in this 

study. The first of these characteristics is that this 

formulation solves the optimal policy according to 

a state desirability function   in a closed form 

manner. The second one is the possibility of 

expressing this function  as a conditional 

expectation of the product of an immediate cost 

and a future desirability. Therefore, the desirability 

function can be computed by identifying this 

expression with an inner product in a RKHS. The 

concept is formulated, as the model-based case is 

considered and the analytical form of the RKHS 

based evaluation also is extracted. Discussing 

about the possible estimating of this operator from 

transition samples, which leads to performing in 

form of a finite dimensional inner product, 

considering the model-free case. For solutions of 

the SOC problem are summarized as (i) transition 

samples gathered and then, embedding operator 

estimated, (ii) the desirability function and 

immediate cost represented as elements of RKHSs, 

(iii) the desirability function evaluated, recursively, 

as a series of inner products based on the estimated 

operator –including a series of matrix 

multiplications – and (iv) the optimal controls 

computed based on the obtained desirability 

function. The methodology is developed, 

accompanying by a series of alternative estimators 

so that the goal is either reducing the 

computational costs or allowing more efficient use 

of the sample data. The verifications of the 

proposed methods by experimental data.  

2 General Description of Artificial 

Intelligence Control 

The artificial intelligence approach to stochastic 

optimal control, proposed by [79-84] (see also [85-

90]), is reviewed in the current section. 

Considering 
xd

x R as the system state and 

ud
u R as the control signals, a continuous time 

stochastic system can be taken into account as the 

following form: 

    , ,dx f x t dt B x t udt d       

                                                                                      (1)                                                                                                                          

where 
d

is a multivariate Wiener process with 

 
2

,E d Q x t dt  
  , and f , B  and 

Q
 may 

be non-linear functions. It is worthwhile to note 

that the system is linear in the controls while both 

noise and controls act in the same subspace. By an 

objective of the following form, the best Markov 

policy, i.e.,
    ,u t x t t

 is searched: 
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  

 


     

                                                                                      (2)                                                                                                

where T  is a specified terminal time, 
C  and C  

are a terminal and running cost, respectively. The 

expectation is taken w.r.t.  0X 
, the paths of Eq. 

(1) starting in x  and following policy . By 

requiring the quadratic control cost, 

as
u ud d

H R


 , to satisfy 
1 TQ BH B 

for 

some constant scalar 0  , it is further 

constrained. 

It was shown by [79-90] that the optimized 

objective for this form of problem can be stated as:  

     * , min , log ,J x t J x t x t


   

 (3)                                                                                                         

where   is a state desirability function and can be 

obtained by the following path integral: 

 
 

  
  

0

0

1
,

0

0
, ,

T

t

C X s s ds

X x
x t E e X T T


 


   
 
  

                                                                                    (4) 

with     0,T exp 0 /C    . The 

expectation in Eq. (4) is taken w.r.t. uncontrolled 

path of the dynamics Eq. (1), i.e. those under the 

policy
 0 0,0 0 

, starting in tx
. 

     It can be described the optimal policy
 * ,x t

, 

directly, in terms of as the following due to linear 

control with quadratic control cost and : 

     * 1 *, ,
T

xx t H B x J x t   
              (5)                                                                                       

   
 

 
* 1

,
,

,

T x x t
x t H B x

x t


 

 



              (6)                                                                               

As a result, obtaining   is the most challenging 

computation in this form of problem. 

     If the optimal controls at certain time points, say 

 1,...,nt
 with nt T

, is emphasized, a 

representation in terms of the finite dimensional 

distribution 
   ,i ix x t 

 can be obtained 

from Eq. (4), only by computing the 

set
    0 0

0 ,....,X nX X t t
. The following 

recursive expression can be specifically obtained 

using the Markov property of 
 0X t

and 

marginalising intermediate states: 

     
1

1 1 1,
i ii ti

i t i t i i iX x
x E x X X


  

    
 

                                                                                      (7) 

where, 

   

 
1

0

0
1

1

1
(s),s

0 ,
,

ti

ti

i i t ti i

C X ds

i t t X x x
x x E e









 

 
 

 
      

                                                                                     (8)                                                                                                   

with the expectation taken w.r.t. uncontrolled 

paths from it
x

 to 1it
x

 . It should be pointed out 

that 
log i 

can be considered as the (optimal) 

expected cost for the problem ranging from it
x

 to 

1it
x

 over the time horizon 
 1,i it t   under 

dynamics and running costs corresponding to 

those of the overall problem given in Eq. (2). 

Therefore, the problem naturally separated into 

simpler compounds; a set of short horizon 

problems – or indeed a nested hierarchy of such 

  while, in the same time, it is a set of recursive 

evaluations backwards in time. 

3 The Artificial Intelligence Embedding 

Here, a demonstration is provided about the 

possibility of expressing Eq. (7) in terms of linear 

operators in RKHS. More details about the theory 

of RKHS and basic concepts of the presented 

theory in this paper can be found in [69-73] and 

[74-78] and [79-90], respectively. 

Initially, the evaluation of a single step, i.e., i
 

given 1i 
, is considered and model-based 

analytical expressions for the evaluation of i
 in 

terms of certain operators in RKHS is extracted. 
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3.1 Embedding of the Artificial Intelligence 

by a Model-Based Analytical One Step 

Process 

It shows that Eq. (7) may write as an inner product 

in a RKHS in the case based on the model.  The 

process consists of three steps as expressing 

expectations in terms of inner products in a RKHS, 

firstly; adapting the basic expression to conditional 

expectations, secondly; and then, taking into 

account the conditional expectations of functions 

of both the conditional and conditioning variable. 

     H


 is generally used as the RKHS of functions 

Z R associated with the positive semi-definite 

kernel 
 0,0

. Considering 
ZP  as the set of 

random variables on Z , the embedding operator 

can be defined as : zP H   : 

   

 :

, ,0

,

Z Z

Z

z

E h Z h E k Z

Z P h H







      

  

            

                                                                                    (9)                                                             

in which the standard embedding of individual 

elements z Z is directly extended into H 
, 

given by 
   ,0z z 

 commonly 

encountered. 

     The main objective of the considered problem in 

this study is evaluating i
 given in Eq. (7); i.e. 

proper embedding of 1i iX x which makes 

expressing the required expectation as an inner 

product in some RKHS possible. As 1i iX x is a 

simple random variable for fixed ix
, direct 

applying of Eq. (9) is possible. However, 

considering a general conditional random 

variable
Z y

, act as a map 
zY P  is more 

suitable. It yields random variables over Z  which 

gives a value
y Y

, and defines a conditional 

embedding :l lU H H  s.t.: 

 l lZ y U y                                     (10)                                                                             

     It should be pointed out that
   0,l y l y 

. 

It is used in kernel methods as the standard 

embedding operator of elements 
y Y

 used in 

kernel methods. Therefore, conditional 

expectations can be expressed as: 

   

 : ,0

, ,0

l

Z y Z y

Z y U l y

E h Z h E Z

 



       

           

                                                                                 (11)                                                                                                                                                   

were demonstrated the existence and a specific 

form of an operator U which satisfies Eq. (10). It 

should be noted that the argument of the 

expectation in Eq. (7), and in particular of , is a 

function of both the random variable, i.e., 1iX   

and the conditioning ix
. It is opposite to h  in Eq. 

(11). Therefore, direct applying of Eq. (11) is not 

possible. However, an assisting random variable 

X  is introduced where 

   1 1,
i

i i i i X x
P X X x P X x   


with   

the delta distribution. Therefore, the following can 

be written for all h H  : 

   
1 1

1 1,
, ,

i i i i
i i iX x X X x

E h x X E h X X
 

 
     

  

1, ,i ih X X x 
                                            

                                                                                    (12) 

                                                                                                           

If ix
 is considered as a constant parameter, an 

alternative formulation can be obtained with 

equivalent analytical setting, but without an 

immediate yielding of a practical empirical 

estimator. 

     In order to substitute the specific argument 

encountered in Eq. (7) for the generic function h , 

it is assumed that H 
 , H 

, s.t. H   , 

H  , are given (
x xd d

R R R  and 

xd
R R  are a space of functions H 

 and 
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functions H 
, respectively). The mismatch in the 

arity of functions in these spaces can be considered 

by extending H 
 to H    ; a space of 

functions
x xd d

R R R  , using the 

kernel
      , , , ,u v u v u u    

. It means 

that H


 and its tensor product with the RKHS of 

constant functions are identified. Then, Eq. (7) can 

be rewritten by taking the embedding of 

1,i iX X x  into H H H   
  in which the 

product function of i
, 1i 

 locates, and using 

Eqs. (11) and (12): 

     
1

1 1 1, .
i i

i i i i iX X
x E x X x X


        

  

1 1, ,i i i iX X X x 
        

 1, Ui i x   
                            (13)                                                                          

where k  is some kernel over chosen 
xd

R . Taking 

  so that it be able to reuse the pre-computed 

matrices during recursive evaluation of 


estimates of  is computationally critical (see 

Eq. (16)). 

 
3.2 Estimations of Model-Free Finite Sample 

To evaluate the embedding of random variables 

U  and artificial intelligence Eq. (13), it is 

necessary that expectations of kernels to be 

evaluated and remained inflexible. At the same 

time, there should be a detailed analytical 

knowledge about the system dynamics Eq. (1). 

However, forming empirical estimates is simple 

and it leads to practical algorithms. 

     Considering 
  1...

,
m

D x x 
 as a set of i.i.d, 

transition samples of the uncontrolled dynamics, 

e.g., a sample set obtained from trajectory 

executions under the policy
0 , can be expressed. 

[80-90] were shown that a regularized estimate of 

U 

 can be defined as: 

 
1

ˆ
DU g G mI g   

 


 
                             

                                                                                (14)                                                                                        

where   is a regularization parameter and 

,g g 

  and 
G

 are the vectors of embeddings 

and Gramian on the sample data D  respectively, 

i.e., 
 ,0ii

g x

     and 

 ,i jij
G x x

    
. The representations of 

i
and 1i 

 in their respective RKHSs are 

necessary for evaluating Eq. (13). It can be 

assumed, due to recursive evaluation , that the 

empirical estimate of 1i 
 is defined as 

   1 1 ,0
j

i i j ix
j

x g


   

   
 

where 1i  is a vector of weights. In the same way, 

the representation of i
in H 

will be assumed 

as Bg  
) for some weights 


 and B  will be set. 

It will be shown that despite assurance from 

existence of such a representation with assuming 

that i H  
, explicit computing of it is not 

necessary. By substituting the empirical operator 

Û 

of Eq. (14) and the kernel expansions of 

i
and 1i 

into Eq. (13), matrix algebra yields 

the empirical estimate of 
 i x

as: 

   ,0 ,i i x ix x g G 

     
             (15)                                                                                     

with weights i given by: 

   

 
1

1

1

,i
i

T

i DB A iG G G mI  

 

  

   





 

 

 
  
 
       

                                                                                    (16)                                                                              

where , denotes the Hadamard product. In 

addition to obtaining corresponding representation 

of i
given by


), Eq. (16) can be used to 

recursive evaluation of the weights . It should be 

noted that the term involving the representation of 

i
can be written as: 
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      1 1 1 2, , , , ,...
T

DB i i iG x x x x         

                                                                                    (17) 

     This representation states that it is not necessary 

to obtain an explicit representation of   in terms 

of the kernel expansion in H 
but the ability to 

evaluate i
at the sample data D , which is 

comparable to evaluating the cost function, is 

sufficient. 

     It should be critically noted that direct recursive 

computation of all 1...n
is possible since i

is a 

finite weighted sum of kernels and 

therefore, i H  
. In addition, pre-computing 

of all required matrices is possible since those are 

only functions of the sample data. Hence, it is easy 

to obtain an approximate optimal policy from Eq. 

(5) for fine discretisations of the problem. 

 

4 Efficient Estimators 

High computational complexity of 
 3O m

 for 

the matrix inversion is one of main shortcomings 

of the basic estimator Eq. (16). If the same D  and 

 2O m
 per iteration are used in each time step, it 

is required. Another deficiency of Eq. (16) is that it 

needs to sample data under the uncontrolled 

dynamics. Therefore, off policy learning is not 

allowed. Alternative estimators for U  by low rank 

approximations or importance sampling are used 

to remove these drawbacks. We choose to omit the 

discussion of these in order to address a, in our 

opinion, often overlooked aspect of efficiency 

when solving varying problems under the same 

dynamics. Actually, there are not individual tasks 

to be solved but several related problems should 

be solved in a repeated manner. For example, use 

of an optimized single reaching movement is 

limited due to need for a series of such movements 

with changing start and target states as a result of 

complicated interactions. The solution for this 

problem in previous methods is generally based on 

the re-initialization for each specified problem. For 

instance, the start state of Monte-Carlo method is a 

new sample set, even when trivial changes are 

performed. Some extensions to the proposed 

method which aims to improve the efficiency of 

sampling as samples can reuse over and over for 

repeated applications are discussed in the 

following section. 

 

4.1 Using Transition Sample Re-Use for 

Transfer Learning 

One of the practical problems of estimators is the 

necessity of evaluating   at the training 

transitions. Hence, the favorite is obtaining an 

estimator based on evaluation of   on a separate, 

ideally arbitrary, data set D  . It can be seen that: 

     
1

, ,0 , ,0DB ZZ ZZG D C C D    


   

 

 

 
1

T

B D D D D D

D

G G m I G   


    



 

 

where Z  is some free random variable with 

support on 
x xd d

R R , which is implemented as 

an empirical estimator based on a data set 

  1...
,

m
D x x


 

 of i.i.d. samples from Z  

(often in practice D D  ). The considered result 

can be simply achieved by substituting into Eq. 

(16) since the indicated evaluation of the r.h.s. only 

needs evaluation of D   at elements of . 

Specifically, the ability of pre-computing and 

reusing the inverse matrix of Eq. (16) across 

changing tasks is obtained in addition to across 

different time steps by an assumed time stationary 

dynamics. This is of importance for efficient 

estimation in, e.g., the RL setting where incurred 

costs are known only at observed transitions or in 

cases where   can be freely evaluated but it is 

expensive to do so. However, generating large sets 

of transition samples may be comparatively cheap, 

e.g., the case of simple kinematic control where 
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cost evaluation requires collision detection. Note 

that this form makes explicit use of the kernel 


, 

and while we may not be able to 

guarantee H  , by choosing a kernel such that 

the projection of   onto H


is close to , we can 

expect good results. 

 

4.2 Sampling by Augmenting Task 

Generally, samples should be collected from the 

task agnostic dynamics
0X . However, a task often 

induces regularities which suggest more suitable 

sampling distributions. To concentrate samples in 

regions of high , considering the role   takes in 

Eq. (16) (via Eq. (17)) as a weight vector appears to 

be advantageous similar to importance sampling. 

It is clear that   is a suitable guidance for 

choosing the sampling distribution. However, for 

repeated task,   can be incorporated, partly, into 

the sampling process which allows incremental 

learning of the task. 

     For executing several tasks of a generic skill, it is 

frequently characterized by two components as an 

invariant cost relating to the skill and a task 

specific cost components. Assuming that the state 

cost decomposes as: 

     , , , , ,skill taskC x t C x t C x t  
          

                                                                                    (18)                                                                            

where   parametrises the task. In this case, the 

path integral Eq. (4) can be rewritten as: 

 

  
  

1
, ,

0
,

T

task

t

t

C X t t

X x
E e X T T






 

 


   
 
  

                                                                                    (19) 

where, here, the expectation is taken w.r.t. path of 

X 
, which are the dynamics under the optimal 

policy under the invariant skill component of the 

cost. As a result of this, both can incrementally 

learned and using the previous results, the transfer 

of samples between varying tasks sharing a skill 

component. 

 

 

5 Experimental Verification 

5.1 Double Slit 

To show Monte-Carlo approaches to artificial 

intelligence control, the double slit problem which 

is previously investigated is considered since it is, 

in one hand, is so simple to allow for a closed form 

solution for to be obtained, but on the other 

hand, it is so complicated to underline the 

deficiencies of some previous approaches. It deals 

with a particle moving with constant velocity in 

one coordinate, and simultaneously, its position in 

an orthogonal direction is influenced by noise and 

controls. The goal of the task is that square error 

should be reduced to a target value at the end time 

whereas avoiding obstacles at some intermediate 

time. For this problem, the one dimensional 

dynamics are 
dx u d 

and the cost is given 

by: 

   
2

argt etC x x x  
 

 
410

, 2

0

T
if t and x Obstacle

C x t

else


 

 



 

where   is a weight. In this regard, a 

discretisation with time step 0.02s is considered. 

     A comparison is made between the true optimal 

policy and those obtained using two variants of the 

proposed estimator, as OC
, RL

 which are 

based on single transitions from uniformly 

sampled start states and a RL  setting, learning 

from trajectory data without access to the cost, 

respectively. However, these used knowledge of 

the cost function to evaluate   in each step and 

the approach for sample sharing across time steps 

discussed, respectively. The low rank 

approximation and square exponential kernels 

    2
, exp /x y x y  

 with


 , equal to 

the mean distance of the data are used for both 

cases. Moreover, two alternative approaches are 

considered for more comparison. The first 

alternative is the trajectory based Monte-Carlo 

approach. While it has the same number of 

trajectories as used in the RL setting, it uses a 
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Laplace approximation to the true to attain a 

linear approximation of the optimal policy. The 

good performance of the proposed method can be 

clearly seen in which policies are considerably 

enhanced compared to those obtained by the 

alternative Monte-Carlo approach. However, the 

results of the proposed method are comparable to 

those obtained from the Laplace approximation. It 

should be pointed out that the results based on the 

Laplace approximation are computed by a prior 

knowledge about the true . Furthermore, it can 

be observed that the proposed approach makes 

better use of the sample provided by finding a 

policy which is applicable for varying starting 

positions. However, the multi-modality of the 

optimal policy is not recognized by the Monte-

Carlo approach as improper results are obtained. 

For the variational approximation also the re-

compute for each new starting location is very 

crucial. 

     The dependency of the estimate on the sample 

size is studied by comparing the evolution of the 

1L
 error of the estimates of at time 0t  . 

Sample size is denoted as total number of 

transition samples seen. Therefore, the number of 

trajectories is the sample size divided by 100  

for RL
. In order to also highlight the advantages 

of the sample re-use afforded by the approach in 

current paper, we also compare with   , the basic 

estimator given data of the same form as RL
, i.e. 

recursive application of Eq. (16) without sample 

sharing across time steps. 

 

5.2 Reaching Task of Arm Subspace 

For simulating constrained tasks, reaching tasks on 

a subspace of the end-effector space of a torque 

controlled 5dof  arm is considered. The 

considered skill component includes moving with 

the end-effector close to a two dimensional task 

space, while the task examples are given by 

specific reach targets. A linear subspace of the end 

effector space which is a non-linear subspace of the 

joint space is used in this section and the cost 

consists of two components: 

    2,skill skillC x t J x j 
 

    2,task taskC x x    
 

where 
 0

is the mapping from joint to end-

effector coordinates, 
&J j

define the task 

subspace,   specifies the reaching target and 

s are weights. A position control over a 2s  

horizon with a 0.02s discretisation is considered 

here, again. 

     Due to the restrictions of low cost trajectories to 

a small subspace, this task is challenging for 

sample based approaches. Although some 

researchers were suggested to improve end-

effector exploration an inverse dynamics policy 

can be used, it is necessary to increase sample sizes 

for overcoming this problem. With focus on the 

case of changing targets, the ideas originated are 

used as it is assumed that the operators have been 

estimated under the skill augmented dynamics (as 

an alternative to explicit sample generating, 

utilizing the importance sample based estimator 

and then, collecting a sample under 
0X , which is 

more time consuming than what that is performed 

here), and then, the subsequent learning for a 

novel task is considered by the estimator, utilizing 

the already estimated operators in two ways. They 

are directly used in the calculation of    ; 

however, it should be noted that the trajectories 

can be sampled without considering a specific 

policy since these are only required to provide D  . 

As a result, the policy arising is used only when 

considering skillC
, i.e., the skill policy associated 

with  computed using the given operators 

and
 0 0taskC 

. 

     It is demonstrated that sampling under the skill 

policy is more effective in exploring the task 

relevant sub space than null policy.  

 

6 Summary and Conclusion 

An innovative approach is presented in the current 

paper to solve stochastic optimal control problems 

which have the artificial intelligence control form 
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using Monte-Carlo estimates of operators arising 

from a RKHS embedding of the problem. It leads 

to a consistent estimate of problem . Although 

direct application of Monte-Carlo estimation to 

point evaluation of  also obtains a consistent 

estimate, a trajectory sample for each state at which 

an action is to be computed is needed due to 

impracticality of computing the controls for 

anything but simple problems. Despite some 

suggestions provided by previous works to reduce 

sample complexity, it is demonstrated that the 

proposed approach is of more generality in policy 

than these previous suggestions which are not 

consistent in their processes. Moreover, it is shown 

that sample re-using is possible by the proposed 

estimators, particularly for cases in which a new 

sample set is needed in advance. Particular 

emphasis is focused on the transfer in cases where 

execution of several, potentially related, tasks on 

the same plant is required. It shows that use of 

samples from all tasks to learn invariant aspects 

are possible. An alternative approach of the 

proposed method can be defined to combine 

solutions to local control problem, as defined 

by , and hence, to solve a more complicated 

large scale problem. Combining the proposed 

methods with alternative variation approaches will 

be followed in future studies so that a good 

estimate for the comparatively simpler local 

problems can be achieved. Although kernel is not 

chosen in this study, making informed kernel 

choices based on in advance knowledge about the 

structure of the problem may be positive. In 

current work, a method of utilizing RKHS 

embeddings of the transition probability in 

computing the value functions in MDPs. However, 

this work is of some advantages over their work. 

The first advantage is that the optimal controls are 

directly obtained in this paper instead of 

computing the value function. It is better than use 

of explicit maximization to obtain optimal controls. 

In addition, in current study focused on finite state 

problems (where computation of the optimal u  is 

simpler), while harder continuous problem are 

studied in this paper which provides convergence 

guarantees in this setting. As the final point, it 

should be noted that the structure of the problem is 

used to efficiently estimates the required quantities 

which leads to efficient sample re-use and transfer. 
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